

MOS INTEGRATED CIRCUIT $\mu PD72107$

LAP-B CONTROLLER

Link Access Procedure Balanced mode

The μ PD72107 is an LSI that supports LAP-B protocol specified by the ITU-T recommended X.25 on a single chip.

FEATURES

Complied with ITU-T recommended X.25 (LAP-B84 edition)

HDLC frame control Sequence control

Flow control

- ITU-T recommended X.75 supported
- TTC standard JT-T90 supported
- · Optional functions

Option frame

Global address frame

Error check deletion frame

· Powerful test functions

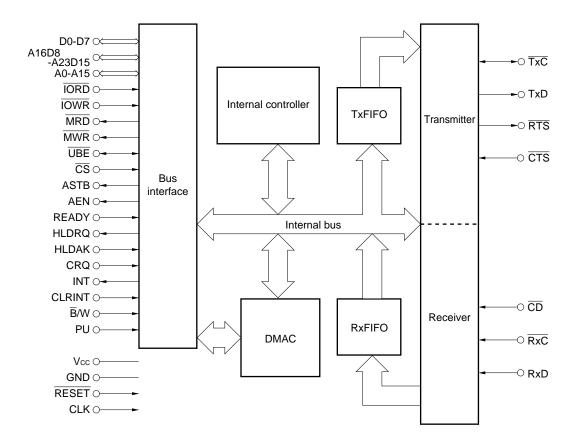
Data loopback function

Loopback test link function

Frame trace function

- · Abundant statistical information
- · Detailed mode setting function
- · Modem control function
- On-chip DMAC (Direct Memory Access Controller)
 24-bit address

Byte/word transfer enabled (switch with external pin)

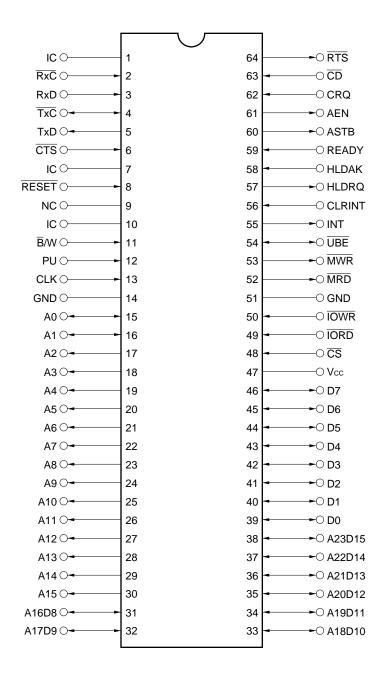

- Memory-based interface
 Memory-based command
 Memory-based status
 Memory-based transmit/receive data
- MAX.4 Mbps serial transfer rate
- · NRZ, NRZI coding

ORDERING INFORMATION

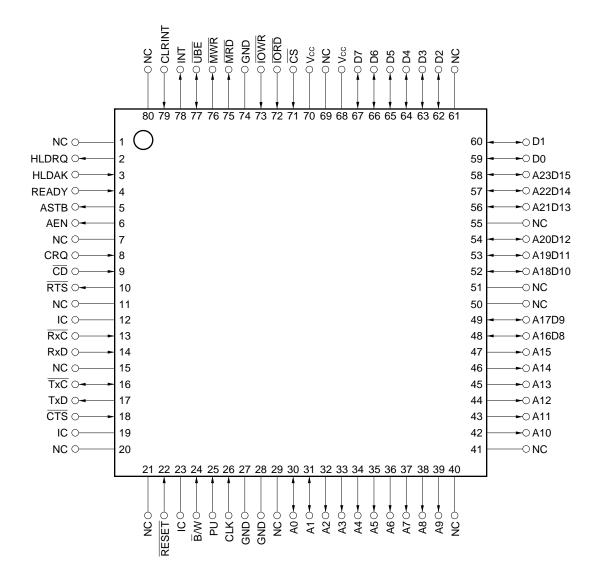
Part Number	Package
μPD72107CW	64-pin plastic shrink DIP (750 mils)
μ PD72107GC-3B9	80-pin plastic QFP (14 x 14 mm)
μ PD72107L	68-pin plastic QFJ (950 x 950 mils)

The information in this document is subject to change without notice.

BLOCK DIAGRAM

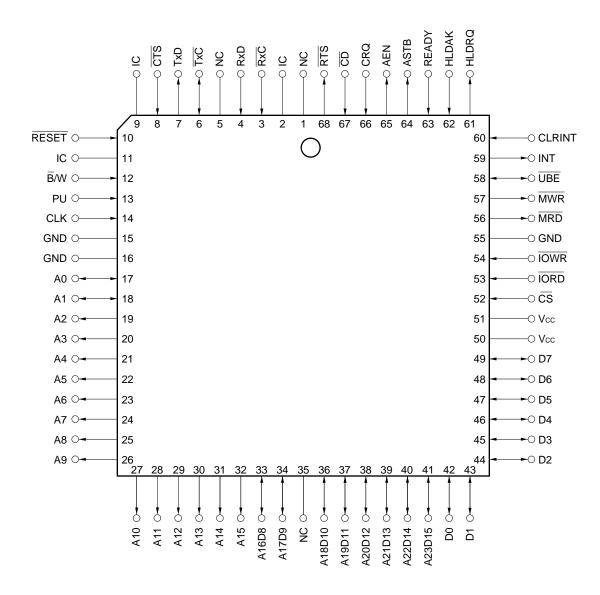

Name	Function
Bus interface	An interface between the μ PD72107 and external memory or external host processor
Internal controller	Manages LAP-B protocol including control of the DMAC block, transmitter block, and receiver block
DMAC (Direct Memory Access Controller)	Controls the transfer of data on the external memory to the internal controller or transmitter block, and controls the writing of data in the internal controller or receiver block to the external memory
TxFIFO	A 16-byte buffer for when transmit data is sent from the DMAC to the transmitter block
RxFIFO	A 32-byte buffer for when receive data is sent from the receiver block to the DMAC
Transmitter	Converts the contents of TxFIFO into an HDLC frame and transmits it as serial data
Receiver	Receives HDLC frame and writes internal data to RxFIFO
Internal bus	An 8-bit address bus and 8-bit data bus that connect the internal controller, DMAC, FIFO, serial block, and bus interface block

PIN CONFIGURATION (Top View)


64-pin plastic shrink DIP (750 mils)

 μ PD72107CW

80-pin plastic QFP (14 \times 14 mm)


μPD72107GC-3B9

68-pin plastic QFJ (950 \times 950 mils)

 μ PD72107L

1. PINS

1.1 Pin Functions

Pin Name	SDIP	QFP	QFJ	I/O	Active	Function
i ili ivallie	Pin No.	Pin No.	Pin No.	1/0	Level	1 unction
Vcc	47	68	50	_	_	+5 V power supply
		70	51			
GND	14	27	15	_	_	Ground (0 V)
	51	28	16			Note that there is more than one ground pin.
		74	55			
CLK	13	26	14	I	_	System clock input
(Clock)						Input clock of 1 MHz to 8.2 MHz.
RESET	8	22	10	I	L	Initializes the internal μ PD72107. Active width of
(Reset)						more than 7 CLK clock cycles is required (clock
						input is required).
						After reset, this pin becomes a bus slave.
PU	12	25	13	ı	_	Pull up to high level when using in normal operation.
(Pull Up)						
CS	48	71	52	ı	L	When bus master
(Chip Select)						Set to disable.
						When bus slave
						Read/write operation from the host processor at low
						level is enabled.
MRD	52	75	56	0	L	When bus master
(Memory Read)				3-state		Reads the data of the external memory at low level.
						When bus slave
						High impedance
MWR	53	76	57	0	L	When bus master
(Memory Write)				3-state		Writes the data to the external memory at low level.
						When bus slave
						High impedance
IORD	49	72	53	ı	L	This pin is used when the external host processor
(I/O Read)						reads the contents of the internal registers of the
						μPD72107.
ĪOWR	50	73	54	ı	L	This pin is used when the external host processor
(I/O Write)						writes the data to the internal registers of the
						μPD72107.
ASTB	60	5	64	0	Н	This pin is used to latch the address output from
(Address Strobe)						the μ PD72107 externally.

Pin Name	SDIP Pin No.	QFP Pin No.	QFJ Pin No.	I/O	Active Level			Functio	n
NC	9	1, 7,	1	_	_	Use this	pin ope	n.	
(No Connection)		11, 15,	5						
		20, 21,	35						
		29, 40,							
		41, 50,							
		51, 55,							
		61, 69,							
		80							
IC	1	12	2	-	-	Do not co	onnect a	anything to	this pin.
(Internally	7	19	9						
Connected)	10	23	11						
UBE	54	77	58	I/O	L/H			er (output)	
(Upper Byte				3-state		_			oin changes according
Enable)						to the input value of the $\overline{\mathbb{B}}/\mathbb{W}$ pin.			
						• Byte transfer mode (B/W = 0)			
						UBE is always high impedance.			
						• Word transfer mode ($\overline{B}/W = 1$)			
									either in pins D0 to D7
						or pins	A16D8	to A23D15	(or both).
						UBE	A0	D0 to D7	A16D8 to A23D15
						0	0	0	0
						0	1	×	0
						1	0	0	×
						1	1	×	×
						When bu	s slave	(input)	
						UBE pin	become	es input, ar	nd indicates that valid
						data is either in pins D0 to D7 or pins A16D8 to			
						A23D15.			
						UBE	A0	D0 to D7	A16D8 to A23D15
						0	0	0	×
						0	1	×	0
						1	0	0	×
						1	1	0	×

Pin Name	SDIP	QFP	QFJ	I/O	Active	Function
1 III Name	Pin No.	Pin No.	Pin No.	1/0	Level	T unction
B/W	11	24	12	ı	L/H	Specifies the data bus that accesses the external
(Byte/Word)						memory when bus master.
						$\overline{B}/W = 0$ Byte units (8 bits)
						$\overline{B}/W = 1$ Word units (16 bits)
						After power-on, fix the status of the B/W pin.
						In the case of word access, the lower data bus is the
						contents data of even addresses.
READY	59	4	63	I	Н	An input signal that is used to extend the MRD and
(Ready)						$\overline{\text{MWR}}$ signal widths output by the μ PD72107 to
						adapt to low-speed memory. When the READY
						signal is low level, the MRD and MWR signals
						maintain active low. Do not change the READY
						signal at any time other than the specified setup/
						hold time.
HLDRQ	57	2	61	0	Н	A hold request signal to the external host processor.
(Hold Request)						When a DMA operation is performed in the μ PD72107,
						this signal is activated to switch from bus slave to
						bus master.
HLDAK	58	3	62	I	Н	A hold acknowledge signal from the external host
(Hold Acknowledge)						processor. When the μ PD72107 detects that this
						signal is active, the bus slave switches to bus
						master, and a DMA operation is started.
AEN	61	6	65	0	Н	When bus master, this signal enables the latched
(Address Enable)						higher addresses and outputs them to system ad-
						dress bus. This signal is also used for disabling
						other system bus drivers.
A0, A1	15, 16	30, 31	17, 18	I/O	_	Bidirectional 3-state address lines.
				3-state		When bus master (output)
						Indicate the lower 2-bit addresses of memory access.
						When bus slave (input)
						Input addresses when the external host processor
						I/O accesses the μ PD72107.
A2 to A15	17 to 30	32 to 47	19 to 32	0	_	When bus master
		(except		3-state		Output bit 2 to bit 15 of memory access addresses.
		40, 41)				When bus slave
						Become high impedance.

Pin Name	SDIP	QFP	QFJ	I/O	Active	Function
riii Naiile	Pin No.	Pin No.	Pin No.	1/0	Level	runction
A16D8 to A23D15	31 to 38	48 to 58	33 to 41	I/O	_	Bidirectional 3-state address/data buses. Multiplex
		(except 50,	(except 35)	3-state		pins of the higher 16 bits to 23 bits of addresses
		51, 55)				and the higher 8 bits to 15 bits of data.
D0 to D7	39 to 46	59 to 67	42 to 49	I/O	_	Bidirectional 3-state data buses.
		(except 61)		3-state		When bus master
						When writing to external memory, these pins become
						input if reading at output.
						When bus slave
						Usually, these pins become high impedance. When
						the external host processor reads I/O of the μ PD72107,
						the internal register data is output.
CRQ	62	8	66	I	Н	A signal requesting command execution to the
(Command						μ PD72107 by the external host processor. The
Request)						μ PD72107 starts fetching commands from on the
						external memory at the rising edge of this signal.
INT	55	78	59	0	Н	An interrupt signal from the μ PD72107 to the
(Interrupt)						external host processor.
CLRINT	56	79	60	I	Н	A signal inactivating the INT signal being output by
(Clear Interrupt)						the μ PD72107. The μ PD72107 generates the CLRINT
						signal in the LSI internal circuit at the rising edge of
						this signal, and forcibly makes the INT output signal
						low.
CTS	6	18	8	I	_	A general-purpose input pin.
(Clear To Send)						The μ PD72107 reports the $\overline{\text{CTS}}$ pin change detection
						status" to the external host processor when the
						input level of this pin is changed in the general-
						purpose input/output pin support (setting RSSL to
						1 by the "system initialization command"). The
						change of input level is recognized only when the
						same level is sampled twice in succession after
						sampling in 8-ms cycles and detecting the change.
						Moreover, when the external host processor issues
						a "general-purpose input/output pin read command"
						to the μ PD72107, the μ PD72107 reports the pin
						information of this pin to the external host processor
						by a "general-purpose input/output pin read response
						status".
						The change can be detected even in the clock input
						stop status of $\overline{\text{TxC}}$ and $\overline{\text{RxC}}$.

	SDIP	QFP	QFJ		Active	
Pin Name	Pin No.	Pin No.	Pin No.	I/O	Level	Function
RTS	64	10	68	0	_	A general-purpose output pin.
(Request To Send)						The output value of this pin can be changed by
						issuing an "RTS pin write command" from the external
						host processor to the μ PD72107. Moreover, when
						the external host processor issues a "general-purpose
						input/output pin read command" to the μPD72107,
						the μ PD72107 reports the pin information of this pin
						to the external host processor by a "general-purpose
						input/output pin read response status".
CD	63	9	67	I	_	A general-purpose input pin.
(Carrier Detect)						The μ PD72107 reports the "CD pin change detection
,						status" to the external host processor when the
						input level of this pin is changed in the general-
						purpose input/output pin support (setting RSSL to
						1 by the "system initialization command"). The
						change of input level is recognized only when the
						same level is sampled twice in succession after
						sampling in 8-ms cycles and detecting the change.
						Moreover, when the external host processor issues
						a "general-purpose input/output pin read command"
						to the μ PD72107, the μ PD72107 reports the pin
						information of this pin to the external host processor
						by a "general-purpose input/output pin read response
						status".
						The change can be detected even in the clock input
						stop status of TxC and RxC.
TxD	5	17	7	0	_	A serial transmit data output pin.
(Transmit Data)						, , , , , , , , , , , , , , , , , , , ,
TxC	4	16	6	I/O	_	When CLK is set to 01 or 10 by "operation mode
(Transmit Clock)				3-state		setting LCW" (output)
						Outputs a clock that divides by 16 the input signal
						of the RxC pin or CLK pin made by the μ PD72107.
						Caution TxC becomes input because CLK = 00
						is the default after reset. It becomes
						output after setting CLK to 01 or 10 by
						"operation mode setting LCW".
						When CLK is set to 00 by "operation mode setting
						LCW" (input)
						Inputs transmit clock externally.
						1

Remark LCW: abbreviation for Link Command Word

Pin Name	SDIP Pin No.	QFP Pin No.	QFJ Pin No.	I/O	Active Level	Function
	FIII NO.	FIII NO.	FIII NO.		Level	
RxD	3	14	4	I	_	A serial receive data input pin.
(Receive Data)						
RxC	2	13	3	I	_	When CLK is set to 01 or 10 by "operation mode
(Receive Clock)						setting LCW"
						Sixteen times the clock input of the transmit/receive
						clock for the on-chip DPLL of the μ PD72107
						When CLK is set to 00 by "operation mode setting
						LCW"
						One time the clock input of the receive clock

Remark LCW: abbreviation for Link Command Word

1.2 Pin Status after Reset of μ PD72107

The status of the output pins and input/output pins after reset in the μ PD72107 is as shown in Table 1-1.

Table 1-1. Pin Status after Reset

T

	Pin Number		Pin Name	I/O	During Reset
64-pin SDIP	80-pin QFP	68-pin QFJ	Pin Name	1/0	During Neset
4	16	6	TxC	I/ONote	High impedance
5	17	7	TxD	0	Н
15, 16	30, 31	17, 18	A0, A1	I/O ^{Note}	High impedance
17 to 30	32 to 47 (except 40, 41)	19 to 32	A2 to A15	ONote	High impedance
31 to 38	48 to 58 (except 50, 51, 55)	33 to 41 (except 35)	A16D8 to A23D15	I/O ^{Note}	High impedance
39 to 46	59 to 67 (except 61)	42 to 49	D0 to D7	I/O ^{Note}	High impedance
52	75	56	MRD	ONote	High impedance
53	76	57	MWR	O ^{Note}	High impedance
54	77	58	UBE	I/O ^{Note}	High impedance
55	78	59	INT	0	L
57	2	61	HLDRQ	0	L
60	5	64	ASTB	0	L
61	6	65	AEN	0	L
64	10	68	RTS	0	Н

Note 3-state

Remarks 1. The status after reset is released is the same as the status during reset.

2. Input low level to the $\overline{\text{RESET}}$ pin for more than 7 clocks of the system clock.

2. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = +25^{\circ}C$)

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{DD}		-0.5 to +7.0	٧
Input voltage	Vı		-0.5 to V _{DD} + 0.3	V
Output voltage	Vo		-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	T _{stg}		-40 to +125	°C

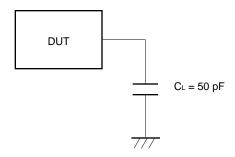
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 5 V \pm 10%)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	VILC	CLK pin	-0.5		+0.8	V
	VIL	Other pins	-0.5		+0.8	V
Input voltage, high	Vihc	CLK and PU pins	+3.3		V _{DD} + 0.3	V
	ViH	Other pins	+2.2		V _{DD} + 0.3	V
Output voltage, low	Vol	IoL = 2.5 mA			0.4	V
Output voltage, high	Vон	Iон = −400 <i>μ</i> A	$0.7 \times V_{DD}$			V
Power supply current	IDD	At operation		20	50	mA
Input leakage current	lu	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{DD}}$			±10	μΑ
Output leakage current	ILO	0 V ≤ Vout ≤ Vdd			±10	μΑ

Capacitance (TA = +25°C, VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	fc = 1 MHz	_	8	15	pF
Output capacitance	Со	Unmeasured pins returned to 0 V	_	8	15	pF
I/O capacitance	Сю		_	8	20	pF

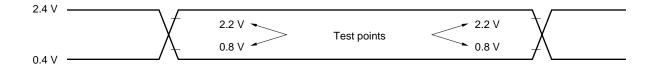


AC Characteristics (T_A = -40 to +85°C, V_{DD} = 5 V \pm 10%)

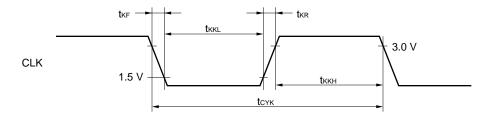
When bus master (1)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
CLK cycle time	tсүк		121	1000	ns
CLK low-level time	tkkl		50		ns
CLK high-level time	tккн		50		ns
CLK rise time	tkr	1.5 – 3.0 V		10	ns
CLK fall time	tkf	3.0 – 1.5 V		10	ns

Load condition

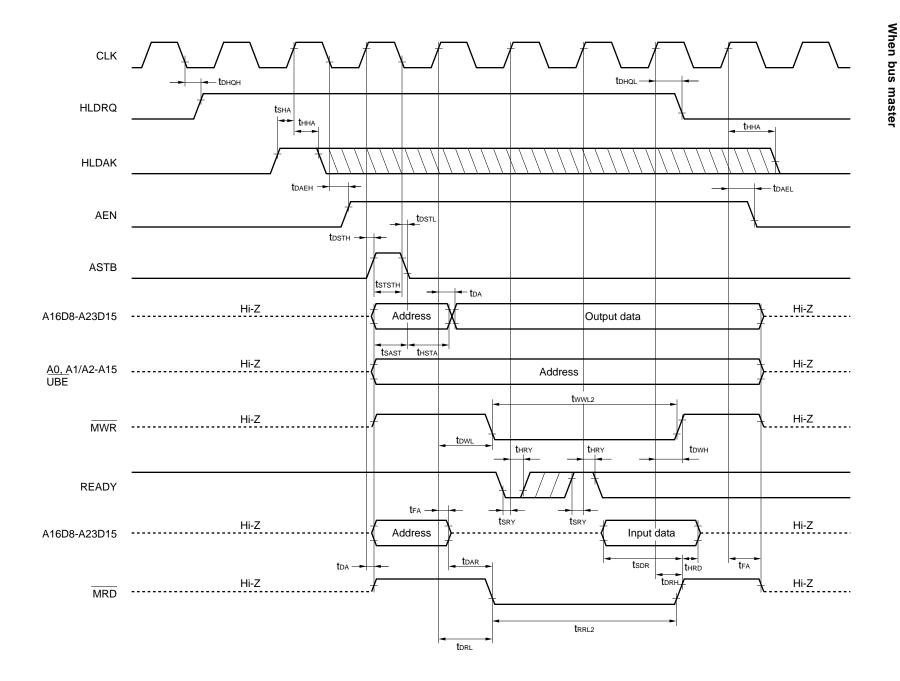


C_L includes jig capacitance.


Caution If the load capacitance exceeds 50 pF due to the configuration of the circuit, keep the load capacitance of this device to within 50 pF by inserting a buffer or by some other means.

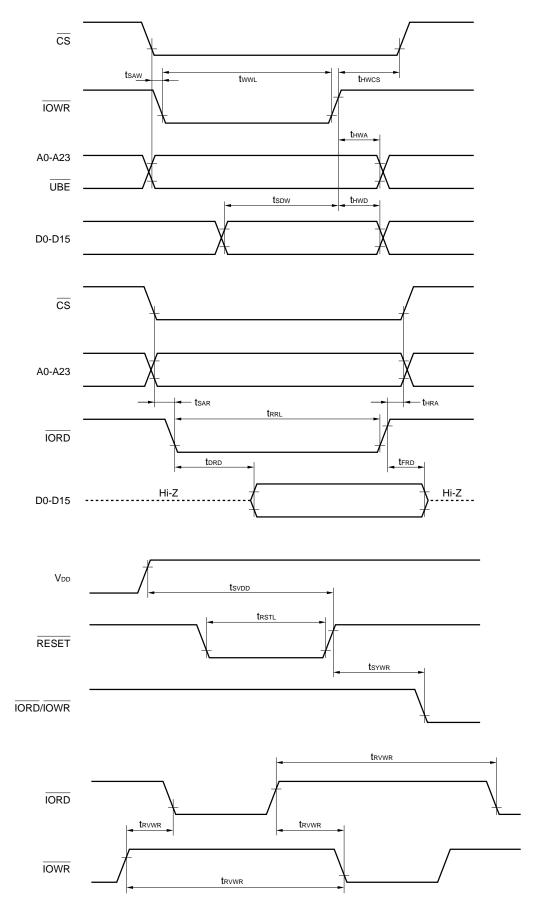
Remark DUT: device under test

AC test input/output waveform (except clock)


System clock

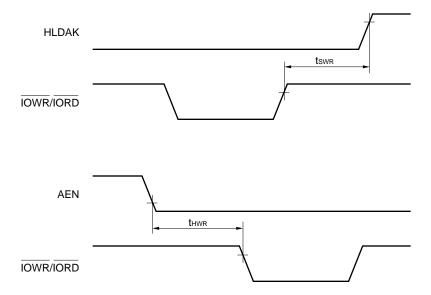
When bus master (2)

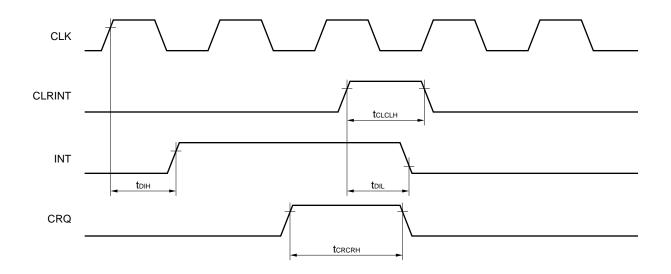
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
HLDRQ ↑ delay time (vs. CLK ↓)	tонон			100	ns
HLDRQ ↓ delay time (vs. CLK ↑)	t DHQL			100	ns
HLDAK setup time (vs. CLK ↑)	t sha		35		ns
HLDAK hold time (vs. CLK ↑)	tнна		20		ns
AEN ↑ delay time (vs. CLK ↓)	t daeh			100	ns
AEN ↓ delay time (vs. CLK ↑)	t _{DAEL}			100	ns
ASTB ↑ delay time (vs. CLK ↑)	tоsтн			70	ns
ASTB high-level width	tsтsтн		tккн-15		ns
ASTB ↓ delay time (vs. CLK ↓)	tostl			100	ns
ADR/UBE/MRD/MWR delay time (vs. CLK 1)	t da			100	ns
ADR/UBE/MRD/MWR float time (vs. CLK ↑)	tfA			70	ns
ADR setup time (vs. ASTB ↓)	tsast		tккн-35		ns
ADR hold time (vs. ASTB ↓)	t HSTA		tккL-20		ns
MRD ↓ delay time (vs. ADR float)	tdar		0		ns
MRD ↓ delay time (vs. CLK ↑)	torl			70	ns
MRD low-level width	trrl2		2tсүк-50		ns
MRD ↑ delay time (vs. CLK ↑)	t DRH			70	ns
Data setup time (vs. MRD ↑)	tsdr		100		ns
Data hold time (vs. MRD ↑)	thrd		0		ns
MWR ↓ delay time (vs. CLK ↑)	towL			70	ns
MWR low-level width	twwL2		2tсүк-50		ns
MWR ↑ delay time (vs. CLK ↑)	t DWH			70	ns
READY setup time (vs. CLK ↑)	tsry		35		ns
READY hold time (vs. CLK ↑)	thry		20		ns



When bus slave (1)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
IOWR low-level width	twwL		100		ns
CS low-level hold time (vs. IOWR ↑)	thwcs		0		ns
ADR/UBE/CS low-level setup time (vs. IOWR ↓)	tsaw		0		ns
ADR/UBE hold time (vs. IOWR ↑)	thwa		0		ns
Data setup time (vs. IOWR ↑)	tsow		100		ns
Data hold time (vs. IOWR ↑)	thwd		0		ns
IORD low-level width	t rrl		150		ns
ADR/CS low-level setup time (vs. IORD ↓)	tsar		35		ns
ADR/CS low-level hold time (vs. TORD ↑)	thra		0		ns
Data delay time (vs. IORD ↓)	tord			120	ns
Data float time (vs. IORD ↑)	tfRD		10	100	ns
RESET low-level width	trstl		7t сүк		ns
V _{DD} setup time (vs. RESET ↑)	tsvdd		1000		ns
RESET ↑ –1st • IOWR/IORD	tsywr		2tcyk		ns
IOWR/IORD recovery time	trvwr		200		ns

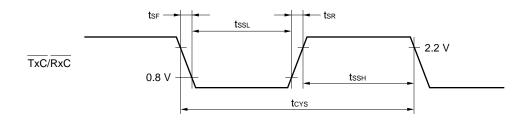

When bus slave

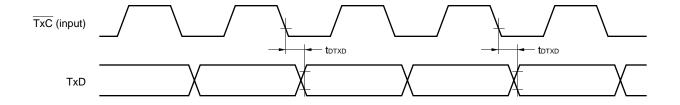

When bus slave (2)

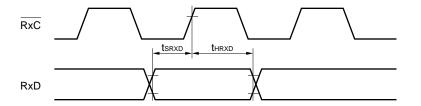
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
IOWR/IORD high-level setup time (vs. HLDAK ↑)	tswr		-20		ns
IOWR/IORD high-level hold time (vs. AEN ↓)	thwr		100		ns

When bus slave (3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
CLRINT high-level width	tclclh		100		ns
INT ↑ delay time (vs. CLK ↑)	tын			100	ns
INT ↓ delay time (vs. CLRINT ↑)	tdil			100	ns
CRQ high-level width	tcrcrh		100		ns

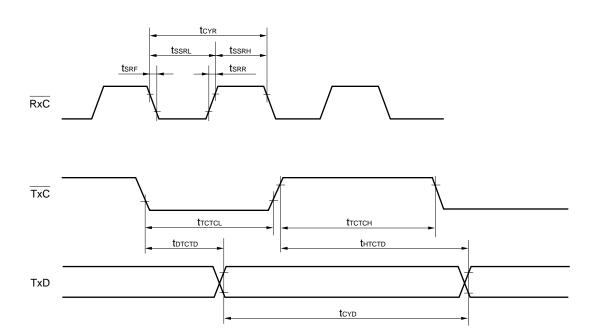





Serial block (1)

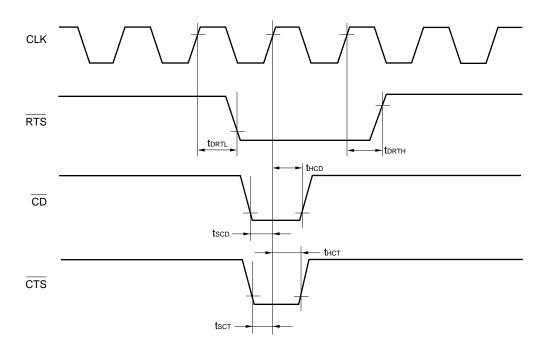
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TxC/RxC cycle time	tcys	When on-chip DPLL is not used	250	DC	ns
TxC/RxC low-level time	tssL		110		ns
TxC/RxC high-level time	tssн		110		ns
TxC/RxC rise time	tsR			20	ns
TxC/RxC fall time	tsf			12	ns
TxD delay time (vs. TxC ↓)	t DTXD			100	ns
RxD setup time (vs. RxC ↑)	tsrxd		50		ns
RxD hold time (vs. RxC ↑)	thrxd		70		ns

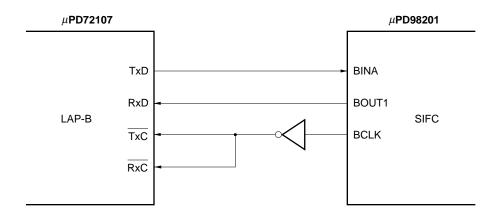
Serial clock (when on-chip DPLL is not used)



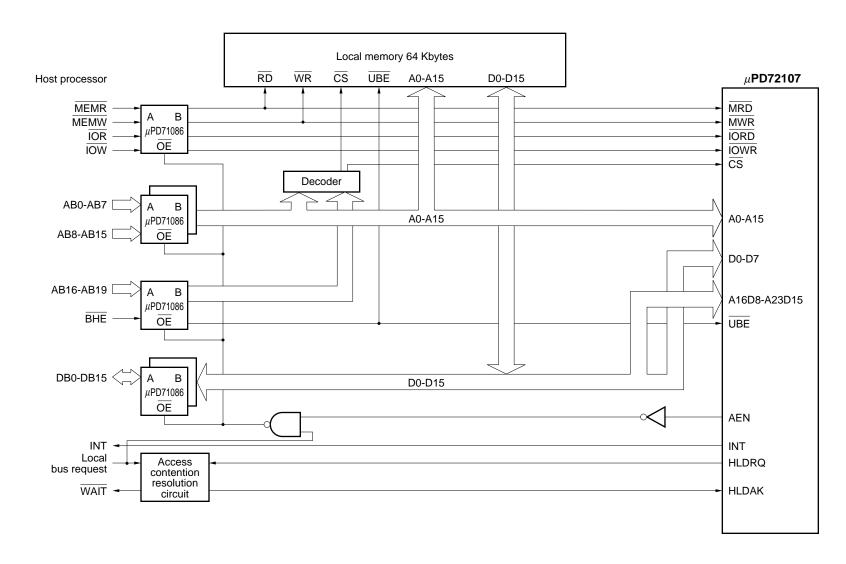
Serial block (2)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RxC cycle time	tcyr	When on-chip DPLL is used (source clock = \overline{RxC}) When on-chip DPLL is used (source clock = CLK)	30.3 125	1000	ns
RxC low-level time	tssrl	When on-chip DPLL is used (source clock = \overline{RxC}) When on-chip DPLL is used (source clock = CLK)	10 50		ns
RxC high-level time	tssrh	When on-chip DPLL is used (source clock = \overline{RxC}) When on-chip DPLL is used (source clock = CLK)	10 50		ns
RxC rise time	tsrr	When on-chip DPLL is used (source clock = \overline{RxC}) When on-chip DPLL is used (source clock = CLK)		5 10	ns
RxC fall time	tsrf	When on-chip DPLL is used (source clock = \overline{RxC}) When on-chip DPLL is used (source clock = CLK)		5 10	ns
Transmit/receive data cycle	tcyp	When on-chip DPLL is used (source clock = \overline{RxC}) When on-chip DPLL is used (source clock = CLK)	500 2000	16000	ns
TxC low-level time	t TCTCL	When on-chip DPLL is used	0.5tcyp-25		ns
TxC high-level time	tтстсн		0.5tcyp-25		ns
TxD delay time (vs. TxC ↓)	tотсто			50	ns
TxD hold time (vs. TxC ↑)	tнтстр		0.5tcyp-25		ns

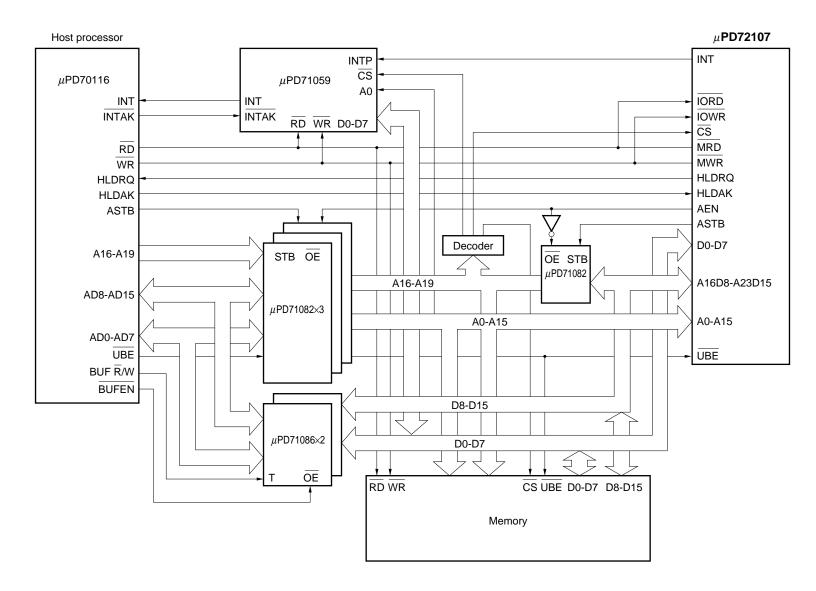

Serial clock (when on-chip DPLL is used)


Serial block (3)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RTS ↑ delay time (vs. CLK ↑)	t DRTH			100	ns
RTS ↓ delay time (vs. CLK ↑)	tdrtl			100	ns
CD setup time (vs. CLK ↑)	tsco		35		ns
CD hold time (vs. CLK ↑)	thcd		20		ns
CTS setup time (vs. CLK ↑)	tscт		35		ns
CTS hold time (vs. CLK ↑)	tнст		20		ns

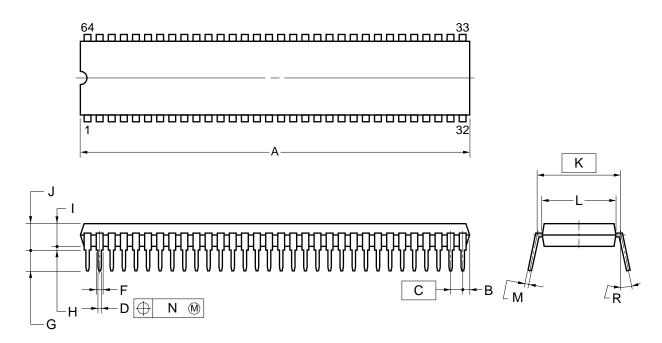

3. APPLICATION CIRCUIT EXAMPLE

(1) Connection with SIFC (μ PD98201)



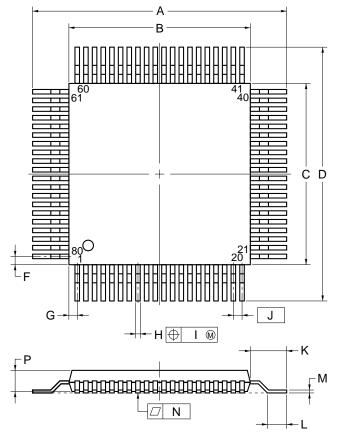
SYSTEM CONFIGURATION EXAMPLES

μ PD72107 System Configuration Example (Local Memory Type)

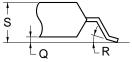

μ PD72107 System Configuration Example (Main Memory Sharing Type)

5. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)


NOTES

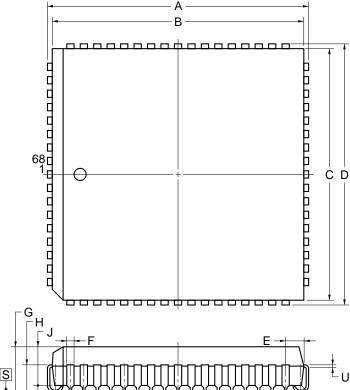
- 1. Controlling dimension— millimeter.
- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.

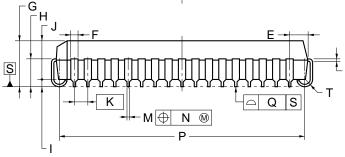

0.028 0.008
ЛАХ.
T.P.)
0.004 0.005
MIN.
0.012
MIN.
0.011 0.008
MAX.
T.P.)
0.009 0.008
0.004 0.003
0

P64C-70-750A,C-3

80 PIN PLASTIC QFP (14x14)

detail of lead end


NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	$0.106^{+0.005}_{-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

S80GC-65-3B9-5

68 PIN PLASTIC QFJ (950 x 950 mil)

NOTES

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	25.2±0.2	0.992±0.008
В	24.20±0.1	$0.953^{+0.004}_{-0.005}$
С	24.20±0.1	$0.953^{+0.004}_{-0.005}$
D	25.2±0.2	0.992±0.008
Е	1.94±0.15	$0.076^{+0.007}_{-0.006}$
F	0.6	0.024
G	4.4±0.2	$0.173^{+0.009}_{-0.008}$
Н	2.8±0.2	0.110+0.009
I	0.9 MIN.	0.035 MIN.
J	3.4±0.1	$0.134^{+0.004}_{-0.005}$
K	1.27 (T.P.)	0.050 (T.P.)
М	0.42±0.08	$0.017^{+0.003}_{-0.004}$
N	0.12	0.005
Р	23.12±0.2	0.910+0.009
Q	0.15	0.006
Т	R 0.8	R 0.031
U	$0.22^{+0.08}_{-0.07}$	$0.009^{+0.003}_{-0.004}$
		DCOL FOA4 0

P68L-50A1-3

6. RECOMMENDED SOLDERING CONDITIONS

The μ PD72107 should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Surface mounting type

• μ PD72107GC-3B9: 80-pin plastic QFP (14 \times 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher), Count: three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher), Count: three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C, Time: 10 sec. Max., Count: one time, Preheating temperature: 120°C Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C Max., Duration: 3 sec. Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

• μ PD72107L: 68-pin plastic QFJ (950 \times 950 mils)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher), Count: one time	VP15-00-1
Partial heating	Pin temperature: 300°C Max., Duration: 3 sec. Max. (per pin row)	-

Insertion type

• μ PD72107CW: 64-pin plastic shrink DIP (750 mils)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: 260°C Max., Time: 10 sec. Max.
Partial heating	Pin temperature: 300°C Max., Duration: 3 sec. Max. (per a pin)

Caution Wave soldering must be applied only to pins. Be sure to avoid jet soldering the package body.

NEC μ PD72107

[MEMO]

NEC μ PD72107

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC μ PD72107

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5